Air Traffic Controller Shift Scheduling by
Reduction to CSP, SAT and SAT-related
Problems*

Mirko Stojadinovié

Faculty of Mathematics
University of Belgrade
mirkos@matf.bg.ac.rs

Abstract. ! In this paper we present our experience in solving Air Traf-
fic Controller Shift Scheduling Problem. We give a formal definition of
this optimization problem and introduce three encodings. The encodings
make possible to formulate a very wide set of different scheduling re-
quirements. The problem is solved by using SAT, MaxSAT, PB, SMT,
CSP and ILP solvers. In combination with these solvers, three different
optimization techniques are presented, a basic technique and its two mod-
ifications. The modifications use local search to modify some parts of the
initial solution. Results indicate that SAT-related approaches outperform
other solving methods used and that one of the introduced techniques
which uses local search can significantly outperform the basic technique.
We have successfully used these approaches to make shift schedules for
one air traffic control center.

1 Introduction

In the last few decades, personnel scheduling problems have been extensively
studied (e.g., nurse scheduling problem [7], course timetabling [9]). Given the
input parameters (e.g., the number of available workers, their skills and skills
needed for working positions) and constraints (e.g., maximum number of consec-
utive working days for each worker), a schedule satisfying specified constraints
needs to be generated.

In this paper we consider a type of scheduling problem called Air Traffic
Controller (ATCo) Shift Scheduling Problem (ATC0oSSP). The objective is to
make a shift schedule, so that at each working hour every position is filled by a
sufficient number of controllers with adequate skills. Because of the nature and
the importance of their job, controllers need to be fully concentrated while they
are on position. Therefore, their schedule must satisfy a stricter set of constraints
compared to other personnel scheduling problems. To the best of our knowledge,
there are no papers which describe encodings or instances of the problem, nor

* This work was partially supported by the Serbian Ministry of Science grant 174021.
! The final publication is available at Springer via http://dx.doi.org/10.1007/978-
3-319-10428-7_63

its solving methods in detail. We focus on solving this problem by using different
exact methods: CSP (COP), SAT, Partial MaxSAT, SMT, ILP and PB.

Constraint satisfaction problems (CSP) and constraint optimization problems
(COP) [1] are wide classes of problems that include many problems relevant
for real world applications (e.g., scheduling, timetabling, sequencing, routing,
rostering, planning). Many different approaches for solving CSPs and COPs exist
(e.g., constraint programming, mathematical programming, systematic search
algorithms, forward checking, answer set programming). Global constraints [3]
describe relations between a non-fixed number of variables and their purpose is
to improve the readability and the efficiency of CSP solving.

Propositional satisfiability problem (SAT) [6] is the problem of deciding if
there is a truth assignment under which a given propositional formula (in con-
junctive normal form) evaluates to true. It is a canonical NP-complete problem
[10] and it holds a central position in the field of computational complexity.
Partial MaxSAT problem [6] is an optimization version of SAT which consists of
finding an assignment that satisfies all hard clauses and maximizes the number
of satisfied soft clauses. Satisfiability modulo theories (SMT) [6] is a research
field concerned with the satisfiability of formulae with respect to some decidable
background theory (or combination of them). Some of these theories are Linear
Integer Arithmetic, Integer Difference Logic, Linear Real Arithmetic, etc. Integer
linear programmaing (ILP) problem deals with minimizing a linear function while
satisfying a set of linear constraints over integer variables. Pseudo-boolean (PB)
problem [6] is a restriction of ILP problem where the domains of variables are
restricted to {0,1}. It can be considered as a generalization of SAT problem.

Contributions of this work are the following.

— A formal definition of ATCoSSP is given (to the best of our knowledge only
informal descriptions are available in literature).

— Three encodings of the problem are introduced. The first two encodings
formulate problem as a COP: the first encoding uses linear arithmetic con-
straints and the well-known global constraint count, whereas the second uses
linear arithmetic constraints only. The third encoding formulates the prob-
lem as a PB problem.

— Different solving methods are compared and a variety of solvers are used.
Experimental results indicate that, due to the nature of the constraints,
non-SAT-related solvers cannot be on a par with SAT-related solvers when
solving this problem is in question. Results show that solver Sugar [29] using
reduction to SAT outperforms all other solvers. Sugar efficiently handles
arithmetic constraints and can process large number of problem constraints.

— Three optimization techniques are defined and applied to ATCoSSP. In each
of them we run the solver on instances that differ only in values of optimiza-
tion variable. The first technique uses a variant of binary search to determine
the next value of this variable. The second is intended to improve the solu-
tions of the first approach by using local search specifically adapted to this
problem. The third is even more adapted to this problem. It uses a two-step
approach that can significantly speed up the solution process by overcoming

the main difficulty: a great number of variables and constraints. It finds an
initial solution and iteratively searches for a better solution by fixing some
parts of the initial solution and then optimizing its other parts.

— As stated by Burke et al. [7], the drawback of many developed scheduling
algorithms is that they were not applied in practice. We have applied the
solving methods described in this paper to make shift schedules for one air
traffic control center. Instances of the problem are made available online.

Related work. The overview of available results related to ATCoSSP is presented
by Arnvig et al. [2]. Some software tools for generating ATCo schedules already
exist [16]. The advantages and the disadvantages of using these tools have already
been recognized [31]. Some of them are in-house tools, and the details about
them are not available. The others are more general tools (e.g., Shift Scheduler
Continuous?) that can be used only with restricted versions of ATCoSSP (e.g.,
controllers are divided into teams and this is usually the case at big airports).

Scheduling problems have been extensively studied in literature. One of these
problems is Nurse Scheduling Problem (NSP) [7]. Although there are many sim-
ilarities between this problem and the problem we discuss, the important differ-
ence is that (in its most frequent form) NSP does not include scheduling on an
hourly basis. Course Timetabling (CTT) [9] is well studied problem that does
scheduling on an hourly basis. ATCoSSP differs from both cited problems as
schedule requirements are much stricter. This implies a great number of hard
and a small number of soft constraints, and finding any solution is often very
difficult. Most often, known heuristic methods which successfully solve NSP and
CTT assume easy way of finding initial solution. The described differences make
it very hard to adapt known heuristic methods to ATCoSSP.

Overview of the paper. In Section 2 we give the problem description. In Section 3
we describe encodings of the problem and the optimization techniques used. We
present our implementation and experimental evaluation in Section 4. Section
5 contains details about the real world application of our implementation. In
Section 6 we draw some final conclusions and present ideas for further work.

2 Problem Description

ATCoSSP is a problem of assigning shifts to controllers in a considered period
(usually a month or a year) with respect to some requirements. There are many
documents that describe these requirements (e.g., [2], [16], [17]). The period
consists of a number of days and the days consist of time slots. Each day a
controller takes exactly one of three possible types of shifts. During working
shifts a controller works in an ATCo facility on a given day from the first until
the last time slot of that shift (including both these time slots) and rests in the
remaining time slots. Working shifts may have different lengths and depending
on the first time slot, we distinguish between morning, day, afternoon and night

2 http://www.bizpeponline.com/Helpssce.html

shifts. It is assumed that the time slots of working shifts are known in advance.
If a controller does not take working shift on some day, we say the controller
takes a rest shift on that day (it is equivalent to weekend day for the majority
of professions as teachers, lawyers, etc.). Each controller is allowed a number of
paid vacation days and we say this person takes a vacation shift on these days.
Vacations for the period are approved or disapproved in advance by the officials.
For each controller, a number of working hours in the considered period must be
greater than some value min (in order to get a full wage) and smaller than some
value maz (to avoid fatigue). Each working shift implies a number of working
hours equal to the duration of that shift. A rest shift is not counted as working
hours. A vacation shift implies some predetermined number of working hours.

Each controller must not take more than a specified number of consecutive
working/rest shifts (usually 2 or 3). Only some controllers have the licence to
be the heads of the working shift. On each day in each time slot when a facility
works, at least one of these controllers has to be in the facility®. Each controller
must take at least a minimum number of rest shifts per month. All controllers
need rest between working shifts, and regulations usually specify a minimum
number of rest time slots between working shifts (e.g., 12 hours).

Assigning controllers to positions within their working shifts is also a part of
the problem. There are different types of positions in ATCo facilities (e.g., tower,
terminal, en route) and depending on a facility size some or all of the positions
are present. In any time slot of a working shift a controller can either be on
position or can have a break. In any time slot a controller can be assigned to
maximum one position. In two consecutive time slots a controller can be on two
different positions. A controller must not be on position longer than the specified
number m of consecutive time slots. Based on expected air traffic intensity, for
each day in each time slot of working hours of a facility (some facilities work
24 hours a day while others do not) a number of controllers is needed for each
position. A controller needs certain skills in order to obtain a licence to work on
some position. It is assumed that the licences of controllers and the number of
needed controllers for each time slot are known in advance?.

The description so far has been focused only on hard constraints which are
essential for shift schedule correctness and thus have to be satisfied. Soft con-
straints represent staff wishes (or preferences). Controllers may prefer different
working shifts (e.g., they may prefer morning shifts), they may prefer to take
consecutive working shifts as rarely as possible, etc. The reasons for including
the staff to make schedules and some of most usual preferences are described by
Arnvig et al. [2], subsection 6.5.

3 This requirement can be expressed in terms of shifts instead of time slots.
4 Actually, determining the number of controllers for each position is a problem itself,
and it has been extensively studied in literature (e.g., [17], [31]).

3 Encodings of the Problem

Time slots can be of any fixed specified length but we assume the length of
time slot is 1 hour. Shift schedules are generated for a period of one month and
for each month, a new shift schedule needs to be generated. There are many
reasons for this: expected monthly traffic intensity changes, different controllers
take vacation days in different months, etc. We assume that there are only two
types of positions: tower and terminal, and that there are no night shifts. These
assumptions are not a limitation since the encodings can be easily extended to
support more types of positions and night shifts.

Let us assume that the days are 1,. .., ng, the controllers are 1, . .., n. and the
shifts are 1,...,ns. In order to make the encodings compact and more efficient,
we assume that working shifts are 1,...,n, — 2, that res = ny — 1 is rest shift
and vac = ng is vacation shift. Time slots take values 0, ..., 23 and for each shift
s, the first (sy) and the last (s;) working hour of that shift are fixed.

We experimented with different encodings and constraints. In the following
3 subsections, we describe 3 encodings which showed good results. Only the
values of variables that determine controllers shifts for each day and controllers
positions for each time slot are used when making tabular schedule for employees.
Other variables are auxiliary and they are used to improve the readability and
the efficiency of the encodings. The fact that vacation shifts and vacation working
hours are fixed for the period is used to make the encodings more compact. Due
to space limit, we omit the descriptions of some constraints®. In subsection 3.4
we describe how optimization instances are solved.

3.1 The first encoding

Linear arithmetic constraints and global constraint count [3] are imposed on in-
teger variables. The count constraint requires that the number of occurrences of
the value of the expression e in the set of expressions ey, ..., ey is in some arith-
metic relation (=, #, <, <, >, >) with the expression n. E.g., count({z1, z2, 3,
x4}, B) > 3 (where e = 5, ¢; = x;, the relation is >, and n = 3) specifies that
the value 5 occurs more than 3 times in the set of variables {x1, z2, z3,z4}.

Integer variables.

— dcg,.: on the day d the controller® ¢ can be assigned any from the possible
shifts 1,...,n,. Note that the fact that the working shifts are 1,...,n; — 2
allows us to state that the controller ¢ is working in a facility on the day d
by imposing constraint dcg. < ng — 2.

5 The omitted variable relationships and the constraints of the encodings are available
online from: http://jason.matf.bg.ac.rs/~mirkos/Atco.html

5 Most of the constraints have to be true for all controllers, but we use some fixed
controller ¢ in the descriptions. Similarly for days, hours and shifts.

— dhcg p,c: in the hour h of the day d the controller ¢ can be assigned different
tasks: ¢ can be on position on tower (TOW = 0) or terminal (TER = 1), ¢
can have break hour in a facility (B = 2), vacation hour (V' = 3) or a rest
time (R = 4). Note that this allows us to state that ¢ is having working hour
in the facility in the hour h of the day d by imposing constraint dhcg p,. < B.

— hg,: on the day d the controller ¢ is counted a certain number of working
hours (0, ...,12).

Variable relationships.

— If the controller ¢ takes the working shift s on the day d, then ¢ works on
working hours of that shift and rests during other hours of the day. So, for
any j € {sf,...,s1}: dcae = s = dhcq ;. < B. For any j € {0,...,23}\
{s¢,...,s1}: dcgc = s = dheg j o = R.

— If the controller ¢ takes the non-rest shift s with working hours sy,...,s;
on the day d, then this implies ¢ is working s; — sy + 1 hours on that day:
dcgc = s — hg. = s;—s¢+1. In case of the rest shift: dcq,. = res — hq. = 0.

Hard constraints.

— Assigning shifts: On the day d the controller ¢ takes one of the possible shifts
(already imposed as variable dcg . takes one from the values 1,...,ny).

— Consecutive working shifts: The controller ¢ must take at least one rest shift
in cws days in a row starting from the day d, if ¢ does not take vacation
shift on any of these days: count({dcg.,- .., dCatcws,c}, T€s) > 1.

— Mazximum working hours: The controller ¢ must not work more than the
specified max working hours in a month: Zgil hac < maz.

— Positions filled: If in the hour A of the day d at least k controllers are needed
for tower position, then the following constraint is imposed: count({dhcg .1,
cooydheqpn,t, TOW) > k. Analogously for terminal position’.

— Consecutive time slots on position: On the day d starting from the hour h
the controller ¢ is on position not more than the specified number m of hours
in a row: dhcgpn,e > BV ...V dhcgpym,e > B.

Soft constraints. Each wish of a controller is expressed as a constraint that is
true iff the wish is not satisfied. Each of these constraints is made equivalent to
a fresh integer variable with the domain {0, 1}. If all these variables take value
0, then all wishes are satisfied. For the fixed controller ¢ a new fresh variable is
denoted by z.;, where index 7 takes the smallest unused non-negative number.

— Shift preferences: If the controller ¢ prefers working shifts s;,...,s,, then
each shift s that is different from these shifts, rest or vacation shift is con-
sidered undesirable on any day d: z.; <> dcq,. = s. E.g., if the month has 30
days and if the smallest unused non-negative index of the variables associated
with the controller cis j, then for undesired shift s variables z ;, ..., 2c j129
are introduced.

7 Actually, several count constraints are replaced by one global cardinality constraint
[3] in order to obtain stronger filtering, but we omit the details.

— Minimize consecutive working shifts: The controller ¢ prefers to take con-
secutive working shifts as rarely as possible. For each day d: x.; ++ dcg,c <
Ne —2Ndegyi,e <ng — 2.

3.2 The second encoding

As the syntax of some solvers does not allow the usage of global constraints, we
adapt the first encoding not to use these constraints. Integer variables, variable
relationships and soft constraints are the same as in the first encoding.

Hard constraints. As most of the hard constraints are the same as in the first
encoding, we only describe differently encoded constraints. New variables and
constraints specifying their relationships are introduced for if-then-else expres-
sions, so this encoding can be of much greater size than the first one.

— Consecutive working shifts: The controller ¢ must take at least one rest shift
in cws days in a row starting from the day d, if ¢ does not take vacation
shift on any of these days: dcq,. = resV ...V dcatcws,c = Tes.

— Positions filled: If in the hour h of the day d at least k controllers are
needed for tower position, then the following constraint is imposed: Y <, (if
(dheg,p,c = TOW) then 1 else 0) > k. Analogously for terminal position.

3.3 The third encoding

Ifly,...,l, are Boolean literals, then the formula i1 +. ..+, # k, k€N, #¢€
{<,<,>,>,=} is called Boolean cardinality constraint (BCC) [27]. In our pre-
sentation of the constraints we use equivalences, implications and clauses as
often as possible in order to improve the readability of the paper, but the third
encoding actually uses BCCs only. Each equivalence can be converted to 2 im-
plications (from left to right and vice versa). The implication a — b can be
directly translated to a clause —a V b and more complicated implications can be
translated to clauses by using De Morgans laws and distributivity rules®. Note
that each clause I3 V...V, is actually BCC l; + ...+, > 1.

Propositional variables.

— dcSg,c,s: on the day d the controller ¢ takes the shift s.

— dcg,c: on the day d the controller ¢ takes a working shift.

— dhcgp,e: the hour h of the day d for the controller ¢ is a working hour (in a
facility or on vacation). If false, ¢ is having rest hour.

— towg pc/tera n.c/Posanc: in the hour h of the day d the controller ¢ is on
position on tower/on position on terminal/on any position.

— ba h,c/Vane: in the hour h of the day d the controller ¢ has break hour in a
facility /has vacation working hour.

8 There is no risk of exponential blow-up as implications in this encoding have small
number of literals.

Variable relationships.

— If the controller ¢ takes the working shift s on the day d, then ¢ works on
working hours of that shift and does not work during other hours of the day.
So, for any j € {sy,...,s1}: desgc,s — dhcgje. For any j € {0,...,23}\
{s¢,...,s1}: desge,s = —dheg e

— The controller ¢ works in the hour A of the day d iff ¢ is on position on tower
or on position on terminal or has break hour in a facility or has vacation
working hour: dhcg n,c < towgncViteraneV ban,eV Van,c.

— The controller ¢ is on position in the hour h of the day d iff ¢ is on position
on tower or on terminal: posg p c <+ towgn,c V terqp.c.

Hard constraints.

— Assigning shifts: On the day d the controller ¢ takes one of the possible shifts
(any of working shifts, rest or vacation shift): desgc1 + ... + dcsgen, = 1.

— Consecutive working shifts: The controller ¢ must not work in a facility more
than cws days in a row starting from the day d, if ¢ does not take vacation
shift on any of these days: ~dcqV ...V ~dcitcws,c-

— Mazximum working hours: The controller ¢ must not work more than the
specified maz working hours in a month: 374, 522 “dheq), . < maz.

— Positions filled: If in the hour A of the day d at least k controllers are needed
for tower position, then the following constraint is imposed: Y.<, towg . >
k. Analogously for terminal position.

— Consecutive time slots on position: On the day d starting from the hour h
the controller ¢ is on position not more than the specified number m of hours
in a row: =posqpn,c V...V TPOSq htm,c-

Soft constraints. Fresh Boolean variables are introduced in the same way as
integer variables with the domain {0, 1} in the first encoding.

— Shift preferences: If the controller ¢ prefers working shifts si,...,s,, then
any other shift s that is different from these shifts, rest or vacation shift is
considered undesirable on any day d: z.; <+ dcsg,c,s = 1.

— Minimize consecutive working shifts: The controller ¢ prefers to take consecu-
tive working shifts as rarely as possible. For each day d: z.; <> dca,cAdcat1,c.

3.4 Search for optimum

Controllers indicate importance for their wishes and this is expressed by associ-
ating integer weight with each wish they have. In order to make the schedule fair,
the weights are scaled so that for each controller the sum of weights of all wishes
is equal to some fixed value. If the controller ¢ specifies m. wishes expressed by
the Boolean variables z. ; (introduced in the description of soft constraints), and
if associated weights are scaled to the values w, ;, then controllers penalty is de-
fined: cpenaity = Z?lcl We,i - Tc,;- For each controller ¢, the constraint of the form
Cpenalty < cost is imposed (for the fixed value of some integer variable cost). The

goal is to find a minimum non-negative value for this variable (the maximum of
all controllers penalties is to be minimized). Note that all z.; have the domain
{0,1}, so the upper constraint can be encoded either as a linear expression (for
the first two encodings) or BCC (for the third encoding).

Three optimization techniques are used. For all of them, instances for differ-
ent values of cost (with bounds cost; and cost,.) are generated and solved by new
runs of the associated solver. The solving process starts from the beginning for
each new value of cost on the instance which differs from the previous instance
only in this value. We are aware that there are approaches that can improve ef-
ficiency by using incremental solving [14,30], but the improvements should not
be significant due to results of conducted experiments (Subsection 4.2). Linear
search, binary search and many other algorithms [6] can be used to find an op-
timal value of cost variable. In all three techniques we use (asymmetric) binary
search algorithm combined with some additional techniques.

The first technique (bsBasic). In this approach pure (asymmetric) binary search
is used. If a solution is found and the maximum controllers penalty is some value
sol (sol = max,2, Cpenalty, Where Cpenaity is calculated for the found values of
Zc,i), then cost, = sol — 1. If no solution exists, then cost; = cost + 1. Next
instance considers the value cost = cost; + k - (cost, — cost;). For k = 1/2 this
is symmetric binary search, and for k£ > 1/2 the satisfiable instances are favored
(they are usually easier). The search is ended and an optimum is found when
cost; becomes greater than cost,..

The second technique (bsShFEzc). Having found a solution with the maximum
penalty sol, a local search is used in order to improve the solution (to reduce
sol). The local search is based on shift exchanges. Two shifts can be exchanged
between two controllers if they are of the same length and if the exchange does
not violate any of the hard constraints. In the example schedule given in Table
1, if Alice and Charlie have licences for the same positions and Alice prefers
working in the morning, then their working shifts on the day 4 are promising
candidates for exchange. The shifts are exchanged whenever the greater of two
controllers penalties is not increased. This assures that sol cannot be increased.
In order to escape from local minimum, after a number of iterations a certain
number of random shift exchanges is performed (thus maybe increasing sol).
After a number of local search iterations, the binary search continues.

Name | Day 1 Day 2 Day 3 Day 4
Alice |2 (08-16)[4 (rest)[2 (08-16)[3 (12-20)
Bob [4 (rest)|3 (12-20)[3 (12-20)[4 (rest)
Charlie[l (04-12)[4 (rest)|1 (04-12)]2 (08-16)
Dave |4 (rest)|3 (12-20)|5 (vac.)|5b (vac.)
Table 1. Small example of schedule for only 4 days (no position schedule presented).
Shifts are 1 (04-12), 2 (08-16), 3 (12-20), 4 (rest), 5 (vacation).

The third technique (bsNoPos). The third and the second technique are similar.
The difference is in the way the local search is performed. This technique assumes
that all controllers have the licence to work on all positions. We aim to get
much smaller encodings by replacing position requirements with working shift
requirements. A number of controllers is needed for each position in each time
slot, as noted in Section 3. In the initially found solution, a sufficient number of
controllers is assigned to each position in each time slot and at the same time a
number of controllers is assigned to each working shift on each day (e.g., on the
day 2 in the example given in Table 1, 2 controllers are assigned to the shift 3
and no controllers are assigned to the shift 1).

The goal is to reduce the number of assigned controllers to each working
shift and to get less filled shift schedule than the one initially found. Let us first
assume that for some days d; and ds the same number of controllers is needed for
each position in each time slot of these days (we assume this is the case with days
1 and 3 in the example). The second assumption is that for each working shift,
the number of assigned controllers to that shift on day d; is less or equal than
the one on day dy. The third assumption is that for at least one working shift,
the number of assigned controllers to that shift on day d is strictly less than the
one on day do (days 1 and 3 fulfill both the second and the third requirement).
If these three assumptions are met, then the number of needed controllers for
each working shift of dy is made equal to the corresponding number of d;, thus
decreasing the number of needed controllers for working shifts of the day ds (no
controller is needed for the shift 3 on day 3). The positions assignment for d; is
copied to position assignment for do. We repeat this until there is not a day for
which the number of needed controllers for any working shift can be reduced.

The search is now continued in the encodings where instead of positions vari-
ables and constraints, the constraints specifying the number of needed controllers
for each working shift on each day are imposed (e.g., in the first encoding for day
2: count({dca 1, ...,dcaa}, 3) > 2). Each time slot of these shifts is already asso-
ciated with a position. This significantly reduces the encodings size (we denote
the original encoding as complete and this encoding as reduced encoding). When
an optimum on the reduced encoding is found, it is not necessary the optimum
of the initial problem. The binary search then continues on complete encoding.

4 Experimental Evaluation

All the tests were performed on a multiprocessor machine with AMD Opteron(tm)
CPU 6168 on 1.9Ghz with 2GB of RAM per CPU, running Linux. Value k = 4/5
is used for optimization as it showed good results in initial experiments. The
timeout is 600 minutes (10 hours) for each instance, including both encoding
and solving time (the first is negligible in comparison to the second).

Instances. We experimented with making monthly shift schedules for 2 differ-
ent months for an airport in Vrsac, Serbia, that employs 12 controllers. Officials
specified different input parameters as they wanted to choose among several

Variables Constraints Domain

Encoding|complete|reduced|complete|reduced | complete|reduced
1 10215 |3951.7 | 81295.3 | 13400 | 4.79 2.79
2 35222.2 | 4467 | 131840 | 14430 | 2.82 2.70
3 55447.9 | 12964 | 160314 [{65293.1 2 2

Table 2. Average numbers of variables and constraints, and average domain size on
all instances.

schedules. Parameters differed in number of working shifts (from 3 to 5) and
their working hours (from 8 to 12), in number of controllers allowed to take va-
cation, and in few other parameters. For each month 9 instances were generated.
Officials selected one of the solutions to be an official schedule®. In this way,
18 real-world instances were generated!’. Additionally, we generated 4 harder
instances in order to estimate the scalability of different solving methods. These
instances include more controllers (17-25), longer periods (60-120 days) and more
controllers are needed for certain positions in certain time slots.

Table 2 shows the average number of variables, constraints and average do-
main size for each of the encodings. The numbers are presented both for the
complete and reduced encodings used during local search in bsNoPos technique.
The numbers indicate that the size of reduced encoding is significantly smaller
compared to complete encoding. This is due to a large number of variables and
constraints directly connected to position requirements. Both these variables and
constraints need to be introduced for each controller, day and time slot, so we
advocate that the sizes of complete encodings can not be significantly reduced.
Although the first two encodings differ only in the way some of the constraints are
encoded, the first encoding is much more compact as it uses global constraints.

4.1 Solving methods and preliminary experiments

Solving methods. Four exact solving methods were used to make schedules.
The first method uses state-of-the-art non-SAT-oriented CSP solvers for solv-
ing generated CSP and COP instances in two formats. The first two encodings
specifications can be directly translated to these formats. XCSP [25] format is
used by solvers Mistral 1.545 [19] and Abscon 112v4 [23]. MiniZinc [24] input for-
mat is used by solvers mzn-gl2cpx, mzn-gl2fd, mzn-gl2lazy, mzn-g12mip included
in MiniZinc 1.6 distribution and mzn-gecode from Gecode-4.2.0 [26] distribution.
The second method reduces CSP and COP instances in the described formats
to satisfiability problems SAT, Partial MaxSAT and SMT (in Linear Integer
Arithmetic theory). In this approach, input instances are translated to instances

9 The most important parameter in selection was the number of controllers allowed
to go on vacation - the intention was to maximize this number.

10 The source code of our implementation and the instances used in experiments (but
without third-party solvers, due to specific licensing) are available online from: http:
//jason.matf.bg.ac.rs/~mirkos/Atco.html

of satisfiability problems in standardized input formats (e.g., DIMACS!! for
SAT, WCNF!? for Partial MaxSAT, SMT-LIB!® for SMT). Modern efficient
satisfiability solvers are used for finding solutions that are then converted back
to the solutions of the original CSPs and COPs. Systems Sugar v2-0-3 [29] and
Satdj 2.3.4 [4] are used for reduction to SAT. We performed the reduction to
SMT and solvers Z3 v4.2 [11] and Yices 2.2 [12] are used for solving generated
instances. Partial MaxSAT solvers QMaxSAT 0.4 [21] and MSUNCORE-20130422
[22] are used for solving (slightly modified) instances generated by Sugar.

The third method solves the problem instances of the third encoding directly
encoded in satisfiability input formats (PBS!* for PB and already mentioned
DIMACS format for SAT) by corresponding satisfiability solvers. We used SAT
solvers clasp 2.1.3 [18], MINISAT 2.2 [13] and Lingeling aqw-27d9fd4-130429 [5],
and PB solvers clasp 2.1.3 and MINISAT+ 1.0 [15]. In all further experiments
in case of SAT and Partial MaxSAT solvers reduction to clauses is done using
sequential counters (as they outperformed cardinality networks, that we used
in experiments) implemented in system meSAT [28]. This system implements
5 encodings of CSP problems to SAT and it uses different encodings of BCCs
to SAT. When number of variables is greater than 20, at-most-one constraint
(special type of BCC where # is < and k is 1) is encoded in a way described by
Chen [8]. Otherwise, it is encoded in a way described by Klieber [20].

The fourth method uses ILP solver IBM ILOG CPLEX Optimization Stu-
dio'® with the second encoding specification translated to its input format.

Preliminary experiments. These were conducted on 5 randomly selected in-
stances with the goal to eliminate less efficient solvers. All solvers except Partial
MaxSAT solvers were used with the described optimization techniques, as they
outperformed the built-in optimization algorithms. All solvers were used in their
default configurations.

4.2 Experimental results

In this subsection we present the results only for the solvers that achieved the
best results in preliminary experiments and for the interesting instances, the
ones for which not all of the best solvers found optimum within given timeout.

Comparison of techniques. In bsShEzc approach we used 10° iterations. After
each 10* iterations random shift exchanges were performed. However, there was
no improvement in the value of sol, so we excluded this approach from the
experimental results. Table 3 summarizes the results of comparison between the
two remaining techniques using the best solvers. The average objective value
achieved on interesting instances is given. The results show that in case of the
best solvers (Sugar and Yices) bsNoPos technique outperforms bsBasic technique.

1 ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi
2 http://maxsat.ia.udl.cat/requirements

13 http://www.smt-1ib.org

" http://www.cril.univ-artois.fr/PB12/format .pdf

5 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Encoding| 1 2 2 3 3
Method [Sugar|Sugar|Yices|clasp| MINISAT
bsBasic | 31.529.3[50.8]53.2] 66.3
bsNoPos | 23.1 | 22.5(33.2|72.7| 73.7
Table 3. Comparison of techniques on interesting instances (timeout 600 minutes):
cells contain average objective value achieved, the smaller the number, the better the
result is; rows represent techniques; clasp is used for solving PB instances.

Encoding 1 2 3
Instance] Best Sugar Sugar Yices QMaxSAT clasp | MINISAT
bsNoPos|| bsNoPos | bsNoPos |built-in opt.|| bsBasic | bsBasic
2 52 61 (D]55 (1)][52 (1)[160 O)]54 (G1)[52 (35)
3 52 55 (3)[/60 (1)[54 (8)[160 (0)[[58 (0)[52 (129)
4 28 34 (8)[[28 (41)[36 (413)[160 (0)[[36 (99)[38 (538)
5 6 6 (54)[[10 (455)[12 (457)[160 (0)[[20 (95)[10 (587)
6 20 20 (28)[]28 (272)]20 (77)]20 (45)[[20 (70)[20 (342)
10 76 16 (13720 (6)[22 _ (15)[26 (D[22 (2)[16 (105)
14 0 6 (79)][0 (36)]0 (3N)]0 (223)[J0 (21)[0 (447)
15 4 20 (587)[[18 (125)|[4 (418)|160 (0)[[42 (109)[66 (577)
i3 12 13 (88)[20 (I8)[14 (414)[12 _ (77)|[15 (242)[18 (411)
19 8 8 (25)[[8 (40)[8 (329)[160 (0)[[10 (522)[110 (563)
20 8 14 (220)[]15 (67)[8 (329)[160 (0)[[95 (109)[160 (0)
21 12 13 (573)|[12 (300)[42 (145)[160 (0)[[160 (0)[160 _ (0)
22 18 34 (89)[[18 (125)[160 (0)[160 (0)[[160 (0)[160 (0)
average [18.2 23.1 22.5 33.2 115.2 53.2 66.3

Table 4. Results on interesting instances (timeout 600 minutes): each cell contains
objective value; the time needed to achieve this value is given in parenthesis; rows
represent different instances; clasp stands for using clasp on PB instances.

Detailed results. Table 4 shows the results of the best solver/technique combi-
nations. Instances 19-22 are the additionally generated harder instances. If the
best achieved objective value from all the methods used (column Best) equals
the optimum, the content of the cell is printed in italic font. For cells contain-
ing 2 numbers, the first number is the value of objective variable achieved by
the method in the given timeout. Number 160 denotes that the solver did not
find any solution on a given instance (160 is used as it is greater than all the
objective values obtained). The number in parenthesis is the time (in minutes)
needed to achieve the objective value. The cells which represent the best method
for each instance are printed bold. In the last row we present the arithmetic mean
(average objective value) from the obtained objective values.

Results show that among the best solvers there were no non-SAT-oriented
solvers (mzn-gl2cpx and Abscon were the only ones that managed to solve some
of the instances but could not refine any of the found solutions). Interestingly,
CPLEX could not solve any instance. By removing constraint Positions filled,
CPLEX managed to solve some of the instances so probably these constraints are
the reason for inefficiency. We attribute success of SAT-oriented solvers to small

T T
1022] | Sugar (1) bsNoPos
—— Sugar (2) bsNoPos
° —4— Yices (2) bsNoPos
% 102 + —e— QMaxSAT (2) built-in opt.
>)
@ o clasp (3) bsBasic
2 —=— MINISAT (3) bsBasic
'8 1008 |-
=
o
[
&0
g 106 |-
>
<
1004 |-
Ll el il il

10* 102 103 10*

Time (seconds)

Fig. 1. Average objective value achieved in time - each mark on the curves represents
one decrease in value; the encoding for each solver is given in parentheses.

domains of variables and large number of connection constraints (they represent
about 75% of the generated constraints). The best results in average are achieved
by reduction to SAT using Sugar. However, there are cases when other solvers
achieved better performance. When we look at the hard instances (19-22), we
can see that Sugar significantly outperforms other solvers. As BCC encodings of
hard instances for the third encoding are very large, MINISAT and clasp are less
successful with these instances. Sugar efficiently handles arithmetic constraints
by using order encoding. This solver can process large number of constraints of
the problem as it uses efficient built-in propagation. These are the reasons why
it outperforms other solvers. Its success cannot be attributed to the underlying
SAT solver, as MINISAT achieved only slightly better performance than Lingeling.

Figure 1 shows the change of average objective value achieved on the inter-
esting instances during time (as if tests were run in parallel) for each of the
solving methods presented in Table 4. It is taken that objective value achieved
in the beginning is 160 for all solving methods and all instances. Solver Sugar
shows the best performance and it achieves similar performance on the first and
the second encoding. This can be attributed to similarity of these encodings,
with the difference in encoding some of the constraints only. Reduction to PB
achieves good results in the beginning and is the best solving method for finding
quick solutions. However, it does not scale well in time. The average number
of solver runs is 19 when an optimum was found, otherwise it is 3. In presen-
tation of Sugar++ [30] (a version of Sugar using incremental solving) in Third
International CSP Solver Competition'6, the authors indicate that the solving
time of incremental search can be significantly increased when the number of
solver runs is small (less than 6). For these reasons, we advocate that incremen-

16 http://www.cril.univ-artois.fr/CPAIO8/

tal search could not significantly improve the objective values found, although
it could reduce the time in cases when optima were found.

5 Real World Applications

The schedules for the airport in VrSac were generated manually prior to us-
ing techniques described in this paper. The need for automated generation of
schedules is seasonal. The number of needed working hours in summer months
increases and the number of available controllers decreases, as this is the time
when most of employees go on vacation. Therefore, it becomes too hard to gen-
erate schedules manually for these months, and the airport staff is trying to find
the way to automate this process. Last year scheduling was offered as a service,
not as a tool, as we have not yet developed GUI-based tool to enter input (but
we plan to address this issue in our further work). We generated schedules for
summer months of 2013. It took us about a month to develop the application
that reads the input, automatically generates instances, solves them and outputs
tabular schedules (their correctness is automatically checked). The automated
generation of schedules is also planned for summer months of 2014.

We generated two schedules manually in order to compare them with the
automatically generated ones. On average, we achieved objective value 50 in 3
hours by manually generating and objective value 28 in 11 minutes by automated
generation (Sugar (2) bsNoPos). Many wishes in soft constraints became possible
to satisfy by using the automation. This lead to higher satisfaction of the staff.
Since automatically generated schedules reduce the overall controllers workload,
the controllers are less subject to fatigue, so the overall safety is improved. Also,
the manual scheduling was very error-prone. No improvement of solution could
be made by using simple shift exchanges, as suggested by the results of bsShEzc
technique. The solution can be improved if we consider the exchange of a larger
number of controllers and shifts of different lengths. But in our experience, this
is almost impossible to achieve manually.

6 Conclusions and Further Work

In this paper, we have presented the air traffic controller shift scheduling prob-
lem. We have described three encodings of the problem in detail and presented
three optimization techniques for solving the problem. A variety of solvers have
been used for this problem. We have used the described solving methods to
design shift schedules for one air traffic control center.

To our knowledge, the presented encodings are the most compact way to in-
troduce position variables and constraints as they are needed for each controller,
for each day and for each time slot in all three encodings. These variables and
constraints represent the largest part of generated instances. Non-SAT-related
approaches are inefficient in processing these instances. SAT-related approaches
are significantly more efficient as they compactly encode the variables with small
domains and directly encode connection constraints. Experimental results show

that the technique bsNoPos that fixes assigned positions in local search improves
efficiency of the best solver (Sugar). Generally, main lessons learned from the use
of CP are that different CP techniques should be tried and that it is beneficial
to hybridize CP with other techniques (e.g., local search).

Our experience shows that stated requirements can be very diverse and can
change over time. Existing software cannot express these requirements. The en-
codings we have developed offer a rich modeling language and a possibility to
formulate a very diverse set of requirements.

We plan to address unexpected condition changes (e.g., sick leave) in future.
Also, the promising directions for further work are improvements of bsShEzc
technique and the usage of other types of local search.

Acknowledgments We thank Filip Mari¢, Milan Bankovi¢, Mladen Nikoli¢
and anonymous reviewers for valuable comments on the first versions of this
manuscript.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Krzysztof R. Apt. Principles of constraint programming. Cambridge University

Press, 2003.

. M Arnvig, B Beermann, B Képer, M Maziul, U Mellett, C Niesing, and J Vogt.

Managing shiftwork in european atm. Literature Review. European Organisation
for the safety of air navigation, 2006.

. Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global constraint

catalog. Technical report, SICS, 2005.

. Daniel Le Berre and Anne Parrain. The sat4]j library, release 2.2. JSAT, 7(2-3):59—

6, 2010.

. Armin Biere. Lingeling, plingeling, picosat and precosat at sat race 2010. FMV

Report Series Technical Report, 10(1), 2010.

. Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors.

Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications. 10S Press, February 2009.

. Edmund K. Burke, Patrick De Causmaecker, Greet Vanden Berghe, and Hen-

drik Van Landeghem. The state of the art of nurse rostering. J. Scheduling,
7(6):441-499, 2004.

. Jingchao Chen. A new sat encoding of the at-most-one constraint. In Proceedings

of the 9th International Workshop on Constraint Modelling and Reformulation,
2010.

. Marco Chiarandini, Mauro Birattari, Krzysztof Socha, and Olivia Rossi-Doria.

An effective hybrid algorithm for university course timetabling. J. Scheduling,
9(5):403-432, 2006.

Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A.
Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors, STOC, pages 151-158.
ACM, 1971.

Leonardo Mendonga de Moura and Nikolaj Bjgrner. Z3: An efficient smt solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, TACA.S, volume 4963 of Lecture
Notes in Computer Science, pages 337-340. Springer, 2008.

Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, 2:2, 2006.

Niklas Eén and Niklas Soérensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer
Science, pages 502-518. Springer, 2003.

Niklas Eén and Niklas Sérensson. Temporal induction by incremental sat solving.
Electr. Notes Theor. Comput. Sci., 89(4):543-560, 2003.

Niklas Eén and Niklas Sorensson. Translating pseudo-boolean constraints into sat.
JSAT, 2(1-4):1-26, 2006.

EUROCONTROL. Shiftwork practices study - atm and related industries.
DAP/SAF-2006/56 Brussels : EUROCONTROL, 2006.

Committee for a Review of the En Route Air Traffic Control Complexity and
Workload Model. Air traffic controller staffing in the en route domain: A review
of the federal aviation administration’s task load model. 2010.

Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp
: A conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka, and John S.
Schlipf, editors, LPNMR, volume 4483 of Lecture Notes in Computer Science, pages
260-265. Springer, 2007.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Emmanuel Hebrard. Mistral, a constraint satisfaction library. Proceedings of the
8rd International CSP Solver Competition, pages 31-39.

Will Klieber and Gihwon Kwon. Efficient cnf encoding for selecting 1 from n
objects. In Proc. International Workshop on Constraints in Formal Verification,
2007.

Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. Qmaxsat:
A partial max-sat solver. JSAT, 8(1/2):95-100, 2012.

Joao Marques-Silva. The msuncore maxsat solver. SAT 2009 competitive events
booklet: preliminary version, page 151, 2009.

Sylvain Merchez, Christophe Lecoutre, and Frédéric Boussemart. Abscon: A pro-
totype to solve csps with abstraction. In Toby Walsh, editor, CP, volume 2239 of
Lecture Notes in Computer Science, pages 730-744. Springer, 2001.

Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. Minizinc: Towards a standard cp modelling language. In
Christian Bessiere, editor, CP, volume 4741 of Lecture Notes in Computer Science,
pages 529-543. Springer, 2007.

Olivier Roussel and Christophe Lecoutre. Xml representation of constraint net-
works: Format xcsp 2.1. CoRR, abs/0902.2362, 2009.

Christian Schulte, Mikael Lagerkvist, and Guido Tack. Gecode. Software download
and online material at the website: http://www. gecode. org, 2006.

Carsten Sinz. Towards an optimal cnf encoding of boolean cardinality constraints.
In Peter van Beek, editor, CP, volume 3709 of Lecture Notes in Computer Science,
pages 827-831. Springer, 2005.

Mirko Stojadinovi¢ and Filip Mari¢. mesat: Multiple encodings of csp to sat.
Constraints. 2014, doi: 10.1007/s10601-014-9165-7.

Naoyuki Tamura and Mutsunori Banbara. Sugar: A csp to sat translator based
on order encoding. In Proceedings of the third constraint solver competition, pages
65-69, 2008.

Tomoya Tanjo, Naoyuki Tamura, and Mutsunori Banbara. Sugar++: a sat-based
max-csp/cop solver. Proc. the Third International CSP Solver Competition, pages
144-151, 2008.

EATCHIP Human Resources Team. Ats manpower planning in practice: Introduc-
tion to a qualitative and quantitative staffing methodology. HUM.ET1.5T02.2000-
REP-01 Brussels : EUROCONTROL, 1998.

