
Air Traffic Controller Shift Scheduling by
Reduction to CSP, SAT and SAT-related

Problems?

Mirko Stojadinović

Faculty of Mathematics
University of Belgrade
mirkos@matf.bg.ac.rs

1 Encodings of the Problem

Time slots can be of any fixed specified length but we assume the length of time
slot is 1 hour. Shift schedules are generated for a period of one month and for
each month, a new shift schedule needs to be generated. There are many rea-
sons for this: expected monthly traffic intensity changes, different controllers use
vacation days in different months, etc. We assume that there are only two types
of positions: a tower and a terminal, and that there are no night shifts. These
assumptions are not a limitation since the encodings can be easily extended to
support more types of positions and night shifts.

Let us assume that the days are 1, . . . , nd, the controllers are 1, . . . , nc and the
shifts are 1, . . . , ns. In order to make the encodings compact and more efficient,
we assume that working shifts are 1, . . . , ns − 2, that res = ns − 1 is rest shift
and vac = ns is vacation shift. Time slots take values 0, . . . , 23 and for each shift
s, the first (sf ) and the last (sl) working hour of that shift are fixed.

We experimented with different encodings and constraints. In the following 3
subsections, descriptions of 3 encodings which showed good results are described.
All 3 encodings are arc consistent [2], but other forms of consistencies are not
guarantied (e.g. node or path consistency). This means that in the beginning
of the solving, propagation cannot deduce anything by using binary constraints,
but can use constraints of other arities for deduction. Only the values of variables
that determine controllers shifts for each day and controllers positions for each
time slot are used when making tabular schedule for employees. Other variables
are auxiliary and they are used to improve the readability and the efficiency of
the encodings. The fact that vacation shifts and vacation working hours are fixed
for the period is used to make the encodings more compact. Due to space limit,
the descriptions of some constraints are omitted1. In subsection ?? we describe
how optimization instances are solved.

? This work was partially supported by the Serbian Ministry of Science grant 174021.
1 The omitted variable relationships and the constraints of the encodings are available

online from: http://jason.matf.bg.ac.rs/~mirkos/Atco.html



1.1 The first encoding

Linear arithmetic constraints and global constraint count [1] are imposed on in-
teger variables. The count constraint requires that the number of occurrences of
the value of the expression e in the set of expressions e1, . . . , ek is in some arith-
metic relation (=, 6=, ≤, <, ≥, >) with the expression n. E.g., count({x1, x2, x3,
x4}, 5) > 3 (where e = 5, ei = xi, the relation is >, and n = 3) specifies that
the value 5 occurs more than 3 times in the set of variables {x1, x2, x3, x4}.

Integer variables.

– dcd,c: on the day d the controller2 c can be assigned any from the possible
shifts 1, . . . , ns. Note that the fact that the working shifts are 1, . . . , ns − 2
allows us to state that the controller c is working in a facility on the day d
by imposing constraint dcd,c ≤ ns − 2.

– dhcd,h,c: in the hour h of the day d the controller c can be assigned different
tasks: c can be on position on tower (TOW = 0) or terminal (TER = 1), c
can have a break hour in a facility (B = 2), a vacation hour (V = 3) or a rest
time (R = 4). Note that this allows us to state that c is having working hour
in the facility in the hour h of the day d by imposing constraint dhcd,h,c ≤ B.

– hd,c: on the day d the controller c is counted a certain number of working
hours (0, . . . , 12).

Variable relationships.

– If the controller c takes the working shift s on the day d, then c works on
working hours of that shift and rests during other hours of the day. So, for
any j ∈ {sf , . . . , sl}: dcd,c = s → dhcd,j,c ≤ B. For any j ∈ {0, . . . , 23} \
{sf , . . . , sl}: dcd,c = s→ dhcd,j,c = R.

– If the controller c takes rest shift on the day d, then c has rest time during
all hours of the day. So, for any j ∈ {0, . . . , 23}: dcd,c = res→ dhcd,j,c = R.

– If the controller c works in a facility in the hour h of the day d, then c takes
a working shift on that day: dhcd,h,c ≤ B → dcd,c ≤ ns − 2.

– If the controller c takes the non-rest shift s with working hours sf , . . . , sl
on the day d, then this implies c is working sl − sf + 1 hours on that day:
dcd,c = s→ hd,c = sl−sf +1. In case of the rest shift: dcd,c = res→ hd,c = 0.

Hard constraints.

– Assigning shifts: On the day d the controller c takes one of the possible shifts
(already imposed as variable dcd,c takes one from the values 1, . . . , ns).

– Vacation shifts: If the controller c is allowed to take vacation shift vac on
the day d, then dcd,c = vac. This also implies a certain vacation hours and
rest time during other hours of that day. So, for any j ∈ {vacf , . . . , vacl}:
dhcd,j,c = V . For any j ∈ {0, . . . , 23} \ {vacf , . . . , vacl}: dhcd,j,c = R. If the
controller c does not take vacation shift on the day d, then dcd,c 6= vac and
for any j ∈ {0, . . . , 23}: dhcd,j,c 6= V .

2 Most of the constraints have to be true for all controllers, but we use some fixed
controller c in the descriptions. Similarly for days, hours and shifts.



– Consecutive working shifts: The controller c must take at least one rest shift
in cws days in a row starting from the day d, whenever c does not take
vacation shift on any of these days: count({dcd,c, . . . , dcd+cws,c}, res) ≥ 1.

– Consecutive rest shifts: The controller c must not take rest shifts more than
crs days in a row starting from the day d: count({dcd,c, . . . , dcd+crs,c}, res) ≤
y.

– Heads of the shifts: On the day d and a facility working hour h one of
controllers that have licence to be the head of the working shift has to be
in the facility. Let c1, . . . , cp be all of these controllers that do not have
vacation hour in this time slot. One from them does not take rest hour:
count({dhcd,h,c1 , . . . , dhcd,h,cp}, R) 6= p.

– Minimum rest shifts: The controller c must take at least the minimum num-
ber m of rest shifts per month: count({dc1,c, . . . , dcnd,c}, res) ≥ m.

– Rest time between shifts: If the controller c takes a shift si on the day d,
then there are some shifts that c must not take on day d + 1, as c needs a
specified number of rest hours. For each such shift sj the following constraint
is imposed: dcd,c = si → dcd+1,c 6= sj .

– Two day working hour constraints: On the day d and the following day the
controller c must not in sum work more than some specified number of hours
q (e.g. q = 22): hd,c + hd+1,c ≤ q.

– Maximum working hours: The controller c must not work more than the
specified max working hours in a month:

∑nd

d=1 hd,c ≤ max.
– Minimum working hours: The controller c has to work at least the specified

min working hours in a month in order to get full wage:
∑nd

d=1 hd,c ≥ min.
– One position per time slot: The controller c in the hour h of the day d can

work on at most one place: c can be on position on tower or on position
on terminal or have break hour in a facility or have a working hour in the
vacation shift. No constraints need to be imposed as variable dhcd,h,c can
take exactly one from the values 0, . . . , 4.

– Positions filled: If in the hour h of the day d at least k controllers are needed
for tower position, then the following constraint is imposed: count({dhcd,h,1,
. . . , dhcd,h,nc}, TOW ) ≥ k. Analogously for terminal position3.

– Consecutive time slots on position: On the day d starting from the hour h
the controller c is on position not more than the specified number m of hours
in a row: dhcd,h,c ≥ B ∨ . . . ∨ dhcd,h+m,c ≥ B.

– Licences: If the controller c does not have a licence to be on position on
tower, then for each day d and hour h: dhcd,h,c 6= TOW . Analogously for
terminal position.

Soft constraints. Each wish of a controller is expressed as a constraint that is
true iff the wish is not satisfied. Each of these constraints is made equivalent to
a fresh integer variable with the domain {0, 1}. If all these variables take value
0, then all wishes are satisfied. We denote each fresh variable with xc,i, where
for each fixed controller c index i takes different values.
3 Actually, several count constraints are replaced by one global cardinality constraint

[1] in order to obtain stronger filtering, but we skip presenting the details.



– Shift preferences: If the controller c prefers working shifts s1, . . . , sz, then
each shift s different from these shifts, rest or vacation shift is considered
undesirable on any day d: xc,i ↔ dcd,c = s. E.g., if the month has 30 days
and if the smallest unused non-negative index of the variables associated
with the controller c is j, then 30 variables xc,j , . . . , xc,j+29 are introduced.

– Minimize consecutive working shifts: The controller c prefers to take con-
secutive working shifts as rarely as possible. For each day d: xc,i ↔ dcd,c ≤
ns − 2 ∧ dcd+1,c ≤ ns − 2.

– Maximize consecutive rest shifts: The controller c does not prefer isolated
rest shifts. For each three consecutive days d, d + 1, d + 2, when c does not
take vacation shift on any of these days: xc,i ↔ dcd,c ≤ ns − 2 ∧ dcd+1,c =
res ∧ dcd+2,c ≤ ns − 2.

1.2 The second encoding

As the syntax of some solvers does not allow the usage of global constraints, we
adapt the first encoding not to use these constraints. Integer variables, variable
relationships and soft constraints are the same as in the first encoding.

Hard constraints. Most of the hard constraints are the same as in the first
encoding, so we only describe the constraints which are encoded differently. New
variables and constraints specifying their relationships are introduced for if-then-
else expressions, so this encoding can be of much greater size than the first one.

– Consecutive working shifts: The controller c must take at least one rest shift
in cws days in a row starting from the day d, whenever c does not take
vacation shift on any of these days: dcd,c = res ∨ . . . ∨ dcd+cws,c = res.

– Consecutive rest shifts: The controller c must not take rest shifts more than
crs days in a row starting from the day d: dcd,c 6= res∨ . . .∨dcd+crs,c 6= res.

– Heads of the shifts: On the day d and the facility working hour h one of
controllers c1, . . . , cp that have licence to be the head of the working shift
has to be in the facility: dhcd,h,c1 ≤ B ∨ . . . ∨ dhcd,h,cp ≤ B.

– Minimum rest shifts: The controller c must take at least a minimum number
of rest shifts m per month:

∑nd

d=1(if (dcd,c = res) then 1 else 0) ≥ m.
– Positions filled: If in the hour h of the day d at least k controllers are

needed for tower position, then the following constraint is imposed:
∑nc

c=1(if
(dhcd,h,c = TOW ) then 1 else 0) ≥ k. Analogously for terminal position.

1.3 The third encoding

If l1, . . . , ln are Boolean literals, then the formula l1+. . .+ln # k, k ∈ N, # ∈
{≤, <,≥, >,=} is called Boolean cardinality constraint (BCC) [3]. In our presen-
tation of the constraints we use equivalences, implications and clauses as often as
possible in order to improve the readability of the paper, but the third encoding
actually uses BCCs only. Each equivalence can be converted to 2 implications



(from left to right and vice versa). The implication a→ b can be directly trans-
lated to a clause ¬a ∨ b and more complicated implications can be translated
to clauses by using De Morgans laws and distributivity rules4. Note that each
clause l1 ∨ . . . ∨ ln is actually BCC l1 + . . . + ln ≥ 1.

Propositional variables.

– dcsd,c,s: on the day d the controller c takes the shift s.

– dcd,c: on the day d the controller c takes a working shift.

– dhcd,h,c: the hour h of the day d for the controller c is a working hour (in a
facility or on vacation). If false, c is having rest hour.

– towd,h,c/terd,h,c/posd,h,c: in the hour h of the day d the controller c is on
position on tower/on position on terminal/on any position.

– bd,h,c/vd,h,c: in the hour h of the day d the controller c has break hour in a
facility/has vacation working hour.

– towd,h,c: in the hour h of the day d the controller c is on position on tower.

– terd,h,c: in the hour h of the day d the controller c is on position on terminal.

– posd,h,c: in the hour h of the day d the controller c is on position (on tower
or terminal).

– bd,h,c: in the hour h of the day d the controller c has break hour in a facility.

– vd,h,c: in the hour h of the day d the controller c takes vacation working
hour.

Variable relationships.

– If the controller c takes the working shift s on the day d, then c works on
working hours of that shift and does not work during other hours of the day.
So, for any j ∈ {sf , . . . , sl}: dcsd,c,s → dhcd,j,c. For any j ∈ {0, . . . , 23} \
{sf , . . . , sl}: dcsd,c,s → ¬dhcd,j,c.

– If the controller c takes rest shift on the day d, then c does not work in any
hour of that day. So, for any j ∈ {0, . . . , 23}: dcsd,c,res → ¬dhcd,j,c.

– If the controller c takes vacation shift on the day d, then this implies certain
working hours in vacation shift and non-working time during other hours
of that day. So, for any j ∈ {vacf , . . . , vacl}: dcsd,c,vac → vd,j,c. For any
j ∈ {0, . . . , 23} \ {vacf , . . . , vacl}: dcsd,c,vac → ¬dhcd,j,c.

– The controller c works in the hour h of the day d iff c is on position on tower
or on position on terminal or has break hour in a facility or has vacation
working hour: dhcd,h,c ↔ towd,h,c ∨ terd,h,c ∨ bd,h,c ∨ vd,h,c.

– The controller c is on position in the hour h of the day d iff c is on position
on tower or on terminal: posd,h,c ↔ towd,h,c ∨ terd,h,c.

– The controller c takes working shift on the day d iff c takes neither vacation
nor rest shift on that day: dcd,c ↔ ¬dcsd,c,vac ∧ ¬dcsd,c,res,

4 There is no risk of exponential blow-up as implications in this encoding have small
number of literals.



Hard constraints.

– Assigning shifts: On the day d the controller c takes one of the possible shifts
(any of working shifts, rest or vacation shift): dcsd,c,1 + . . . + dcsd,c,ns

= 1.
– Vacation shifts: If the controller c is allowed to take vacation shift on the

day d, then dcsd,c,vac = 1. This also implies a certain vacation hours and
rest time during other hours of that day. So, for any j ∈ {vacf , . . . , vacl}:
vd,j,c = 1. For any j ∈ {0, . . . , 23} \ {vacf , . . . , vacl}: dhcd,j,c = 0. If the
controller c does not take vacation shift on the day d, then dcsd,c,vac = 0
and for any j ∈ {0, . . . , 23}: vd,j,c = 0.

– Consecutive working shifts: The controller c must not work in a facility more
than cws days in a row starting from the day d, whenever c does not take
vacation shift on any of these days: ¬dcd,c ∨ . . . ∨ ¬dcd+cws,c.

– Consecutive rest shifts: The controller c must not take rest shifts more than
crs consecutive days starting from the day d: ¬dcsd,c,res∨. . .∨¬dcsd+crs,c,res.

– Heads of the shifts: On the day d and the facility working hour h one of
controllers that have licence to be the head of the working shift has to be
in the facility. Let c1, . . . , cp be all of these controllers that do not have
vacation hour in this time slot. One from them has to be in the facility:
towd,h,c1 ∨ terd,h,c1 ∨ bd,h,c1 ∨ . . . ∨ towd,h,cp ∨ terd,h,cp ∨ bd,h,cp .

– Minimum rest shifts: The controller c must take at least the specified number
m of rest shifts per month: dcs1,c,res + . . . + dcsnd,c,res ≥ m

– Rest time between shifts: If the controller c takes a shift si on the day d,
then there are some shifts c must not work on day d + 1, as c needs a
specified number of rest hours. For each such shift sj the following constraint
is imposed: dcsd,c,si → ¬dcsd+1,c,sj .

– Two day working hour constraints: If the controller c takes the shift si on
the day d, then there are some shifts that c must not take on day d + 1,
as c must not work more than a specified number of working hours in a
2 day period. For each such shift sj the following constraint is imposed:
dcsd,c,si → ¬dcsd+1,c,sj .

– Maximum working hours: The controller c must not work more than the
specified max working hours in a month:

∑nd

d=1

∑23
h=0 dhcd,h,c ≤ max.

– Minimum working hours: The controller c has to work at least the specified
min working hours in a month in order to get full wage:

∑nd

d=1

∑23
h=0 dhcd,h,c ≥

min.
– One position per time slot: The controller c in the hour h of the day d can

work on at most one place: c can be on position on tower or on position
on terminal or have break hour in a facility or have a working hour in the
vacation shift: towd,h,c + terd,h,c + bd,h,c + vd,h,c ≤ 1.

– Positions filled: If in the hour h of the day d at least k controllers are needed
for tower position, then the following constraint is imposed:

∑nc

c=1 towd,h,c ≥
k. Analogously for terminal position.

– Consecutive time slots on position: On the day d starting from the hour h
the controller c is on position not more than the specified number m of hours
in a row: ¬posd,h,c ∨ . . . ∨ ¬posd,h+m,c.



– Licences: If the controller c does not have a licence to be on position on
tower, then for each day d and hour h: ¬towd,h,c. Analogously for terminal
position.

Soft constraints. Fresh Boolean variables are introduced in the same way as
integer variables with the domain {0, 1} in the first encoding.

– Shift preferences: If the controller c prefers working shifts s1, . . . , sz, then
any other shift s which is different from these shifts, rest or vacation shift is
considered undesirable on any day d: xc,i ↔ dcsd,c,s = 1.

– Minimize consecutive working shifts: The controller c prefers to take consecu-
tive working shifts as rarely as possible. For each day d: xc,i ↔ dcd,c∧dcd+1,c.

– Maximize consecutive rest shifts: The controller c dose not prefer isolated
rest shifts. For each three consecutive days d, d + 1, d + 2, when c does not
take vacation shift on any of these days: xc,i ↔ dcd,c ∧ dcsd+1,c,res ∧ dcd+2,c.

References

1. Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global constraint
catalog. Technical report, SICS, 2005.

2. Christian Bessiere. Arc-consistency and arc-consistency again. Artificial intelli-
gence, 65(1):179–190, 1994.

3. Carsten Sinz. Towards an optimal cnf encoding of boolean cardinality constraints.
In Peter van Beek, editor, CP, volume 3709 of Lecture Notes in Computer Science,
pages 827–831. Springer, 2005.


