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Abstract

Many different approaches for solving Constraint Satisfaction Problems (CSP) (and
related Constraint Optimization Problems (COP)) exist. However, there is no single solver
that performs well on all classes of problems and many portfolio approaches for selecting a
suitable solver based on simple syntactic features of the input CSP instance are developed.
In this paper we present a portfolio method for CSP based on k-nearest neighbors method.
Unlike other existing portfolio approaches for CSP, our methodology is based on training
with very short timeouts, thus significantly reducing overall training time. Still, thorough
evaluation has been performed on large publicly available corpora and our portfolio method
gives good results. The method improves upon the efficiency of single state-of-the-art tools
used in comparison, and is comparable to classical methods that use long timeout during
the training phase.

1 Introduction

Constraint satisfaction problems (CSP) (and related Constraint optimization problems (COP))
[2] over finite domains are wide classes of problems that include many problems relevant for
real world applications (e.g., scheduling, timetabling, sequencing, routing, rostering, planning)
[35]. Many different approaches for solving CSP problems exist (e.g., constraint propagation,
backtracking search algorithms, local search methods, constraint logic programming, operation
research methods, answer set programming) [35] and there are many state-of-the-art solvers
that implement these approaches.

It has been recognized that there is no single solver nor single approach suitable for all
problems. When solving a CSP instance, one should consider several solvers (and their config-
urations, if applicable) and carefully choose which one to apply on that specific instance. If a
multiprocessor machine is available, one could try to run different solvers in parallel until one
of them solves the problem. However, in many cases this is not possible and it is desirable to
somehow guess the solver that would give the best results. Portfolio approaches that have been
successfully used for SAT (e.g., [26, 27, 31, 32, 47]) but also for CSP (e.g., [1, 21, 24, 34]) assume
that a number of different solvers is available and for each input instance these approaches select
a solver that should be run. This choice is most often based on some syntactic characteristics
of the instance to be solved and on the knowledge gained during previous runs of the available
solvers on some other instances (training instances). When these data are gathered, usually
some machine learning technique is applied.

∗This work was partially supported by the Serbian Ministry of Science grant 174021 and by SNF grant
SCOPES IZ73Z0 127979/1.
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One of the problems when applying portfolio approaches is that a large number of instances
needs to be solved during the training phase, usually with significant timeout value given for
each instance. In consequence, the training phase usually takes a lot of CPU time and most
often needs to be performed on a multi-processor machine. In this work we try to address this
problem. Namely, in many scenarios (e.g., in solver competitions) instances are grouped into
families sharing the same structure, but differing in size and difficulty (a family usually contains
different instances of a single problem or several instances of the same origin). Our starting
hypothesis for this work is that in such cases it suffices to try all available solvers only on some
easier instances from each family, significantly reducing the overall training time. The main
purpose of this work is to evaluate this hypothesis experimentally, i.e., to evaluate the effect of
the training phase duration to the overall quality of a portfolio approach for CSP.

A very desirable characteristic of portfolio methods is their ability to generalize i.e., they
should be able to show good results on instances that were not present in the training set
(assuming that these share some common characteristics with the instances that were considered
during training). Generalization strength of a portfolio approach is usually checked in two ways.
The first is by running solvers on a test set of instances that does not overlap with the training
set (e.g., the training and the test sets are two different corpora used in solver competitions).
The second is by using techniques such as k-fold cross-validation [3] where all available instances
are divided into k parts, and each part is used for testing with other k-1 parts used for training.
However, in this work we also consider some practical scenarios where the user only wants to
solve a specific, fixed set of instances as fast as possible using solvers that are on his disposal,
and where generalization to other instances not from this set is not the primary concern. In this
case, the training and the test set overlap, but still many techniques from standard portfolio
approaches can be adapted and used.

A portfolio approach that we consider in this work is based on the k-nearest neighbors
approach [32]. We consider only finite linear CSP with global constraints. Finite linear CSP [40]
is a special class of constraint satisfaction problems that is often encountered in applications.
Global constraints [4] describe relations between a non-fixed number of variables and their
purpose is to improve readability and efficiency of CSP solving. We focus on solving CSP
problems by reduction to SAT [6], reduction to SMT [6] and by using lazy clause generation
solvers [33]. By using three different solving methods we hope to get greater diversity in the
efficiency of these approaches, thus increasing the potential efficiency of portfolios. The set of
solvers used in our portfolio is determined by the input format of CSP instances and global
constraints that they use (e.g., solvers that do not support global constraints occurring in
instances cannot be used).

In our previous work ([39]) we have applied the portfolio approach to SAT-based CSP solvers
for selecting between different encodings that can be used. In the current work, we extend this
by selecting between different available solvers.

Contributions of this work are the following.

• We present a machine-learning methodology for automated instance-based selection of
suitable solver for a given CSP instance (Section 3).

• We present a thorough experimental evaluation on several large publicly available corpora
using several state-of-the-art solvers, based on reduction to SAT, reduction to SMT and
lazy clause generation (Section 4).

• We show that our approach gives good results even when used with a very fast training
phase (so that the training does not require an advanced cluster computer but can be
done on a single PC). By using reduction to SAT, reduction to SMT and lazy clause



generation we aim to unify the best from all three worlds and achieve significantly better
results than by using a single type of solving method with different solvers/encodings.

• Our system meSAT [39] supports several encodings for reduction to SAT. In the current
work we have extended it to support solving CSP instances by reduction to SMT.

Overview of the paper. In Section 2 we give some basic definitions, describe different
solving methods and solvers, and present some of the most well-known portfolio approaches. We
describe our portfolio approach in Section 3 and in Section 4 we present results of experimental
evaluation of this approach. In Section 5 we draw some final conclusions and present ideas for
further work.

2 Background

In this section we will give some background notions used by our system and we will analyze
prior results in this area.

2.1 Finite Linear CSP

Definition 1. Linear expressions over the set of integer variables V are algebraic expressions
of the form

∑n
k=1 akxk where all xk are variables from V and all ak are integers.

A Finite Linear CSP in CNF is a tuple (V,L, U,B, S) where

1. V is a finite set of integer variables,

2. L : V 7→ Z and U : V 7→ Z are lower and upper bound of the integer variable x and these
bounds determine the domain D(x) of the variable,

3. B is a set of Boolean variables,

4. S is a finite set of clauses (over V and B). Clauses are formed as disjunctions of literals
where literals are the elements of the union of the sets B, {¬p | p ∈ B} and {e ≤ c | e is
linear expression over V , c ∈ Z}.

A Solution of Finite Linear CSP in CNF is an assignment of Boolean values to Boolean
variables and integer values to integer variables satisfying their domains such that when variables
are replaced by the values, all clauses from S are satisfied.

Example 1. A solution of Finite Linear CSP problem V = {x1, x2, x3}, L = {x1 7→ 1, x2 7→
1, x3 7→ 2}, U = {x1 7→ 2, x2 7→ 4, x3 7→ 3}, B = {p}, C = {p∨x1+x3 ≤ 4,¬p∨x3+(−1) ·x1 ≤
0, x1 ≤ 1 ∨ 2 · x2 ≤ 4} is the assignment {p 7→ ⊥, x1 7→ 1, x2 7→ 3, x3 7→ 2}.

In applications, the input syntax is usually modified so that it allows non-contiguous do-
mains, formulae with arbitrary Boolean structure (not only CNF) and with literals formed by
applying other arithmetic relations (e.g., <, ≥, >, =) and other arithmetic operations (e.g.,
integer division, modulo). All these formulae alongside the clauses described in Definition 1
are called intensional constraints. Another usual modification of the syntax is the usage of
extensional constraints (sometimes called user-defined relations) that are defined by a table
of allowed/disallowed assignments to the variables that they constrain. Both intensional and
extensional constraints can be reduced to finite linear CSP in CNF form during preprocessing,
but usually more efficient procedures are obtained if these are treated directly.



Example 2. We give here an example of finite linear CSP specification in the Sugar input
language [40] that system meSAT [39] also uses.

(int x1 1 2) (int x2 1 4) (int x3 2 3)

(imp (>= (+ x1 (* 2 x3)) 3) (and (!= x1 x2) (< x3 (+ x1 x2))))

The example uses only intensional constraints. The first row declares the domains of the
variables and the second row imposes constraint on these variables. One of the solutions to this
problem is the assignment x1 = 1, x2 = 2, x3 = 2.

2.2 Global Constraints

A global constraint1 is a constraint that captures a relation between a non-fixed number of vari-
ables. There are two main benefits from using global constraints. First, compared to encoding
using low-level constraints (that can always be done), specifying problems using global con-
straints is simpler. This implies better readability of high-level problem specifications. Second,
global constraints usually have some structure that can be exploited to solve problem instances
more efficiently than by using low level constraints.

As examples, we will describe three global constraints that are frequently used.

The all-different constraint. The all-different constraint [45] requires that all of its argu-
ments (expressions over integer variables and constants) have different values, i.e., all-different
(e1, . . . , en) specifies that ei 6= ej for any i 6= j.

The nvalue constraint The nvalue constraint [4] requires that expressions e1, . . . , en take a
number of distinct values that is equal to the value of expression e. For example, the constraint
nvalue({x1, x2, x3}, 3) (where ei = xi and e = 3) states that all three variables have to take
three different values.

The count constraint. The count constraint [4] requires that the number of occurrences of
the value of some specific expression e in the set of expressions e1, . . . , en is in specific arithmetic
relation (=, 6=, ≤, <, ≥, >) with some expression n. For example, count({x1, x2, x3, x4}, 5) > 3
(where e = 5, ei = xi, the relation is >, and n = 3) specifies that the value 5 occurs more than
3 times in the set of variables {x1, x2, x3, x4}. This implies that all variables x1, x2, x3 and x4

need to take the value 5.

2.3 Systems used for modeling and solving CSP

Modeling languages. Before solving, a constraint satisfaction problem must be somehow
specified and many modeling languages for this purpose exist. MiniZinc [30] is a constraint
modeling language which is compiled by a variety of solvers to the low-level target language
FlatZinc for which many solvers exist. XCSP [36] is an XML-like low-level format used in
several CSP solving competitions. Instances of this format can be directly translated to Sugar
input format, which is even simpler as it does not use any tags.

1A catalogue of global constraints [4] is available online: http://www.emn.fr/z-info/sdemasse/gccat
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Reduction to SAT. Propositional satisfiability problem (SAT) [6] is the problem of deciding
if there is a truth assignment under which a given propositional formula (in conjunctive normal
form) evaluates to true. It is a canonical NP-complete problem [12] and it holds a central
position in the field of computational complexity. When using reduction to SAT, CSP instances
are encoded as SAT instances and modern efficient satisfiability solvers are used for finding
solutions that are then converted back to the solutions of the original CSP problems.

A fundamental design choice when encoding finite domain constraints into SAT concerns the
representation of integer variables. Several different encoding schemes have been proposed and
successfully used in various applications (e.g., the direct encoding [46], the support encoding
[18], the log encoding [17], the order encoding [41], the compact-order encoding [42], the log-
support encoding [16]). Apart from these standard encoding methods, many custom, problem-
specific encodings and corresponding tools have been devised for various applications (e.g.,
solving resource-constrained project scheduling problem [19]). Also, there are several more
general tools that reduce CSP to SAT using one or more of several standard encodings (e.g.,
Spec2SAT [9], FznTini [20], Sugar [40], Azucar [43], ursa [23], bee [29], meSAT [39]).

NPSpec [8] is a PROLOG-like declarative modeling language. Each problem specification
consists of a database of facts and specification of constraints. Spec2SAT is an application
that allows the compilation of NPSpec specifications (when given together with input data)
into SAT instances.

FznTini [20] introduces a translation for FlatZinc constraint models, such that any satis-
faction or optimization problem written in FlatZinc (not involving floating point numbers) can
be automatically Booleanized and solved by one or more calls to a SAT solver.

Sugar is a constraint solver that solves finite linear CSPs by translating them into SAT by
using order encoding method [41] and then solving SAT instances by several supported SAT
solvers.

Azucar [43] is a successor of Sugar that uses the compact-order encoding [42] for translating
finite linear CSP into SAT. It is tuned for solving specific large domain sized CSP instances.
Log encoding is a special case of compact-order encoding so Azucar can also use this encoding
when reducing to SAT.

ursa family of tools (ursa, URBiVA, ursa major) [23, 28] introduce uniform reductions
of C-like language specifications to SAT or to different SMT theories. The translation has a
precise semantics, communication with SAT/SMT solvers is done using their APIs and finding
all models is supported.

bee [29] (Ben-Gurion University Equi-propagation Encoder) is a constraint specification
language and a compiler to CNF based on the order-encoding [41], similar to Sugar, but applying
several optimizations.

meSAT [39] (Multiple Encodings of CSP to SAT) is a system using different encodings and
their combinations. The supported encodings are: direct [46], support [18], direct-support [39],
order [41] and direct-order [39].

Reduction to SMT. Satisfiability modulo theories (SMT) [6] is a research field concerned
with the satisfiability of formulae with respect to some decidable background theory (or combi-
nation of them). Some of these theories are Linear Integer Arithmetic, Integer Difference Logic,
Linear Real Arithmetic, etc. There are several systems that solve CSP problems by reduction
to SMT.

fzn2smt [7] tool is a compiler from FlatZinc modeling language to the SMT-LIB language2

that is a standard input language of SMT solvers.

2http://www.smtlib.org
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ursa family of tools, as stated in previous paragraph, introduces reduction to different SMT
theories.

Lazy clause generation. In lazy clause generation approach [33], finite domain propagation
engine is combined with SAT solver: propagators are mapped into clauses and passed to SAT
solver, which uses unit propagation and then returns information obtained back to the engine.
In contrary to the eager approach, clauses are not generated a priori but are constructed and
given to the SAT solver during the solving phase. The lazy propagation approach can be viewed
as a special form of Satisfiability Modulo Theories solver, where each propagator is considered
as a separate theory, and theory propagation is used to learn clauses. Solvers mzn-g12cpx and
mzn-g12lazy (included in the MiniZinc G12 distribution) implement lazy clause generation.

2.4 Solver selection for SAT and CSP

The instance-based algorithm selection problem has been widely studied in the SAT community.
Based on the characteristics of the input instance, either some parameters of a single solver are
tuned, or one of several available solvers (so called solver portfolio) is selected to be applied
on an instance. The most successful results are based on machine-learning techniques (e.g.,
SATZilla [47], ISAC [27], ArgoSmArT [31, 32], Non-Model-Based Algorithm Portfolios for SAT
[26]). Each SAT instance is characterized by a set of its features (most of them are purely
syntactic and extracted from the CNF representation). Usually, a training corpus is solved by
different SAT solvers (or a single solver configured by different parameters) and a prediction
model is formed. When a new instance is to be solved, the most suitable solver is chosen, based
on input features of instance and the prediction model.

Algorithm portfolios have recently been applied to constraint satisfaction. CPhydra [34]
is an algorithm portfolio for CSP that uses case-based reasoning to determine how to solve
an unseen problem instance by exploiting a case base of problem solving experience. The
superiority of the portfolio over each of its constituent solvers is demonstrated using challenging
benchmark problem instances from the most recent CSP Solver Competition. Another approach
by Kiziltan et al. [24] uses run-time classifiers (categories are: “short”, “medium” and “long”)
to minimize the average completion time of each instance. This portfolio uses features of
CPhydra and SATZilla and the combination of two. Work by Amadini et al. [1] compares
efficiency of different portfolio approaches based on SAT portfolio techniques and machine
learning algorithms. Hurley et al. [21] presents a hierarchical portfolio approach named Proteus
where for the instance to be solved, first, the type of solving is chosen. In case of reduction
to SAT, the encoding is chosen and then also the solver to be used. The instances used in the
experiments of that paper contain only several types of constraints (e.g., global constraints do
not occur in these instances).

3 Instance-based Solver Selection

In this section, we describe a portfolio approach that automatically selects solver to be used,
based on the features of the constraints used in CSP input instance.

Our approach is a modification of the portfolio approach ArgoSmArT-k-NN , introduced
by Nikolić et al. [32]. In the original formulation, the portfolio chooses between different SAT
solving methods (different SAT solvers, or a single SAT solver with different setups) when
solving a SAT instance. Instead, we choose between different CSP solvers when solving a CSP
instance. The instance-based solver selection consists of training phase and testing phase.



First, a training set of instances is fixed and a training phase is conducted. For each instance
from the training set, its features are extracted and different CSP solvers are applied with a
given time limit. For each such instance and the applied solver the PAR10 score (penalty) [22]
is calculated — solving time if the instance is solved within a given time limit, or the time limit
multiplied by 10, otherwise.

Let us fix the number of neighbors (k) and the distance measure (d). For a fixed training
instance, k-nearest neighbors (k-NN ) from the training set are found (with respect to the
extracted features of training instances and a fixed distance measure). For each solver, the sum
of PAR10 scores of k nearest neighbors is calculated (for the fixed instance). The solver with
the minimal sum is selected for this instance and we call PAR10 score of this solver individual
score. The sum of individual scores of all training instances is called total score.

Different number of neighbors (k) and distance measures (d) are considered in training
phase. The combination giving the best total score (the smallest number) is used in testing
phase. When a new instance (test instance) is to be solved, its features are extracted and
k-nearest neighbors (k-NN ) from the training set are found. The solver with the minimum
individual score for this instance is selected to solve it (off course, the aim is to choose this
solver so that it is the best solver for this instance). In both the training and the testing phase
if the same (minimal) scores are obtained for several solvers then the one of them is selected,
based on some fixed priority. Note that the time limit used when calculating PAR10 score does
not have to be the same as the one used for solving the test instance.

In some k-NN approaches it can be useful to weight the contributions of the neighbors, so
that the nearer neighbors contribute more to the score than the more distant ones. However,
in our approach weights are not used, and the distance of neighboring instances is used only to
determine the set of k-nearest neighbors.

Unlike some other approaches (e.g., [24]) that use features of the generated SAT instances,
we use only features extracted from the original CSP formulation. We considered 70 different
features3 divided in several groups: features related to the number and the percentage of the
constraints of different types — intensional (e.g., percentage of intensional constraints among all
the constraints), extensional, global (e.g., average arity of global constraints), as well as for each
specific type of constraint (e.g., number of arithmetic constraints, number of multiplications,
sum of domains of variables involved in multiplications, number of all-different constraints),
features related to the sizes of the domains of integer variables for all variables in the instance
(e.g., average domain size), and for the variables included in each different type of constraint,
features related to the number of all variables and variables with non-contiguous domains, etc.

Example 3. We give here a simple CSP instance and calculate some of its features.

(int x1 0 3)(int x2 0 4)(int x3 1 5)

(alldifferent x1 x2 x3)

(<= 6 (+ x1 x2))

Sum of the sizes of the domains of variables involved in addition or subtraction is 9 (x1
can take 4 and x2 can take 5 values). Number of occurrences of global constraints is 1 (the
occurrence of all-different constraint). Number of occurrences of intensional constraints is 2
(one addition and one comparison). The average arity of global constraints is 3 (the only global
constraint has 3 operands). Percentage of global constraints considering all constraints is 33%
(all constraints are the all-different constraint, comparison and addition).

3A detailed description of all 70 features is available at http://jason.matf.bg.ac.rs/~mirkos/Mesat.html
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4 Experimental Results

In order to show the efficiency of automated solver selection, we conducted an experimental
evaluation. For reduction to SAT, we used direct encoding implemented in meSAT [39], or-
der encoding implemented in Sugar [40], and log and compact-order encoding implemented in
Azucar [43]. In all experiments and tools, SAT solver Minisat 2.2 [14] was used for solving gen-
erated CNF instances. We extended meSAT to enable reduction of CSP instances to SMT-LIB
language4. The translation of most constraints is straightforward, and only global constraints
are decomposed to more simpler constraints. Solver Yices [13] was used for solving generated
SMT-LIB instances. Lazy clause generation solvers mzn-g12lazy and mzn-g12cpx were also
used [33].

Instances. We used three corpora of CSP problems: (i) CPAI09 containing all problems used
in Fourth International CSP Solver Competition5 that use global constraints, (ii) MiniZinc
containing 29 problems from MiniZinc corpus6 also encoded to use global constraints7, and (iii)
instances of the Dominating Queens problem, described in the global constraints catalogue8.
For each problem, these corpora include several instances that differ in the size of the problem
and specific input data. We used two formats of input files: MiniZinc language [30] and Sugar
input language [40].

Instances from the first corpus were automatically converted from the original input language
to MiniZinc by the converter xcsp2zinc available on MiniZinc page9 and to Sugar input format
by the converter included in the Sugar distribution. Ten instances of problem nengfa could not
be converted by xcsp2zinc and they are omitted from the experiments.

Instances from the second corpus are already in MiniZinc input format and use original
input data (specified in .dzn files from MiniZinc corpora). New problem descriptions in Sugar
input language were made (.mzn files were not directly used due to different types of constraints
supported by these tools).

The third corpus is formed in order to include instances with nvalue constraint in experi-
ments. For this purpose, the instances of the Dominating Queens problem are used. Specifica-
tion of the problem is the same for MiniZinc and Sugar input language.

Experimental environment. All tests were performed on a multiprocessor machine with
AMD Opteron(tm) CPU 6168 on 1.9Ghz with 2GB of RAM per CPU, running Linux. Testing
timeout was 600 seconds for each instance (for total time including selecting the solver where
needed, encoding where needed, and solving).

As different solvers are suitable for different problems, there is a good motivation to use
some instance-based solver selection scheme, and we applied the approach described in Section
3. We compare our instance based selection scheme to the (i) oracle (or virtual best) method
that would select the best solver for each instance (this method is not feasible in practice since
it makes perfect decisions and for each instance it must guess the optimal solver before trying

4The source code of our implementation and the instances used in experiments (but without third-party
solvers, due to specific licensing) are available online from: http://jason.matf.bg.ac.rs/~mirkos/Mesat.html

5http://www.cril.univ-artois.fr/CPAI09
6http://www.minizinc.org
7We chosen these instances for our previous experiments with system meSAT . We plan to use more instances

in our future experiments, not only the ones containing global constraints.
8http://www.emn.fr/z-info/sdemasse/gccat/Cnvalue.html#uid22241
9http://www.minizinc.org

http://jason.matf.bg.ac.rs/~mirkos/Mesat.html
http://www.cril.univ-artois.fr/CPAI09
http://www.minizinc.org
http://www.emn.fr/z-info/sdemasse/gccat/Cnvalue.html#uid22241
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Solving method Solver # (out of 1379) Time (minutes)

Reduction to SAT

meSAT (direct) 945 4755
Sugar (order) 1051 3862
Azucar (compact-order) 959 4713
Azucar (log) 916 5278

Reduction to SMT Yices 771 6456

Lazy clause generation
mzn-g12cpx 707 7002
mzn-g12lazy 845 5824
best-fixed 1051 3862
oracle 1191 2200

Table 1: Summary results of experimental evaluation on all instances; the encoding used for
reduction to SAT is given in parentheses; # denotes the number of solved instances; best-fixed
– the single solver achieving the best results (Sugar in this case), oracle – the best solver for the
instance.

to solve it, which is impossible to implement) and (ii) the best-fixed method – one solver that
gives the best overall performance.

We used 70 features, described in Section 3, all extracted only from instance input files. The
time used for the feature extraction is small (about 0.05 seconds in average on all instances).

Given a training set, all its instances are solved using each of the included solvers in a given
training timeout, and then the optimal parameters (the number of neighbors k and the distance
measure d) are selected in the way described in Section 3. All combinations of k (ranging from
1 to 20) and 4 different distance measures ([44]) are tried on the training set and the ones
generating the best score are declared optimal.

Training phase results (solving times of individual training instances, optimal value of pa-
rameter k, and optimal distance measure d) are used to select the solver for a given test instance.
If the same (best) scores are obtained for more solvers, then the priority of choosing equals the
ordering of solvers when looking total results on all instances used in experiments. When the
solver is selected, it is invoked for that test instance, given a testing timeout of 600 seconds.

For later in discussion we applied all the solvers on all the instances with the timeout of 600
seconds. The total results are shown in Table 1. The separate results for different corpora are
not shown, but only aggregate results. The number of solved instances and total solving time
(in minutes) are shown (for each unsolved instance 600 seconds are added to the total time).
Mean time spent on an instance is directly computable from the total time and the number of
instances. The results indicate that there are many instances easily solved by these state-of-
the-art solvers. Still, the difference between the best-fixed and the oracle is 140 instances, so,
it makes sense to apply some portfolio approach.

The effect of training time on the portfolio effectiveness. In this group of experiments
the training is done on random portions of the corpus and the testing is done on the rest (i.e.,
the cross-validation [3] approach is used for evaluation). Therefore, 5-fold cross-validation is
used, and this method is denoted by autocv. With this method, the training and the test set
never overlap, and we can estimate the potential generalization strength of our approach. The
corpus was divided in 5 equal parts, testing on each part after training on other 4 parts, and
reporting the total results for all 5 parts. To estimate the effect of training time on the portfolio
effectiveness, the experiment is repeated several times, with different values of timeouts used
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Figure 1: Summary results of experimental evaluation on all instances of autocv – automatically
selected solver using cross validation, autost – automatically select solver based on short train-
ing, best-fixed solver and oracle; each mark on curve represents one conducted testing based on
training with the corresponding timeout.

for training, ranging from 1 to 600 seconds (but all the time the corpus was partitioned to the
same 5 parts). The training is done 5 times independently and each time different parameters
(k and d) are obtained and used for testing. The obtained value of k ranges from 5 to 19, with
bigger values used more often. No distance measure d turned out to be significantly better than
the others.

Training timeout 1 5 10 30 60 90 120 300 600
Solved instances 1082 1116 1136 1140 1146 1160 1162 1158 1156
Total training time 145 622 1114 2733 4916 6981 8977 20239 37893
Total solving time 3467 3020 2759 2764 2696 2429 2540 2597 2609
Total time 3612 3642 3873 5497 7612 9410 11517 22836 40502

Table 2: Summary results of experimental evaluation on all instances of autocv method using
different timeouts.

Table 2 shows the obtained results. These results are plotted in Figure 1. The figure shows
the results for the autocv method (but also for the autost method that is described later). The
figure clearly shows that in the beginning there is a sharp increase in the number of solved
instances with the increase of training timeout, but after certain threshold the curve stabilizes.
E.g., for training timeouts of 600 and 90 seconds the number of solved instances is quite similar,
while the overall training time reduces from 28 to 6.5 days.

This demonstrates that in the CSP domain and on corpora that are similar to ours it is
plausible to design and use a portfolio approach where timeouts during training are significantly
lower than expected timeouts during exploitation.



Training timeout 1 2 3 4 5 10 15 30 300 600
Solved instances 1087 1098 1116 1125 1129 1129 1147 1164 1176 1178
Total training time 145 275 396 512 622 1114 1546 2733 20239 37893
Total solving time 3427 3302 3135 2941 2859 2744 2625 2497 2390 2393
Total time 3572 3577 3531 3453 3481 3858 4171 5230 22629 40286

Table 3: Summary results of experimental evaluation on all instances of autost method using
different timeouts.

Obtaining the best results on a fixed set of instances. In some cases users aim to solve
as many instances from a single fixed set of instances in the given total time (e.g., they have
several days before they must deliver the final results) with the given set of available solvers.
A straightforward way would be to choose the single solver that is expected to give the best
results (e.g., the one that gave the best results on some solver competition) and apply it on all
instances. However, this can be improved using the similar techniques that were used for usual
portfolio approaches. Due to the nature of the problem (only a single fixed corpus is relevant),
the generalization of the portfolio to other corpora is not important, so the overlapping between
the training and the test set of instances can be tolerated.

In our experiments we performed both training and testing on the same set of instances
(the union of our three corpora), and we denote this approach by autost. When applying
this method, all instances from the corpus are initially solved with the given training timeout.
Parameters k and d are obtained in training phase as described in Section 3. The obtained
parameters are used for each test instance to select k-nearest neighbors from the training set.
Note that as training and test set are equal, the nearest neighbor from the training set is always
the same as the test instance for which the solver is selected. Again, we used different training
timeouts and in this scenario we focused on using very short timeout values. The results are
shown in Table 3 and plotted in Figure 1. The same trend presented for autocv method also
applies – the total number of solved instances rapidly increases for small training timeouts and
then stabilizes.

It seems that autost outperforms autocv method, but this can be expected as the same
instances that were solved during training are used in testing. In practice, solving time of
autost method can be even smaller as some easy instances are already solved during training
within the given training timeout and there is no need to solve them again during testing.
However, Table 3 presents the results where the selected solver was started again for each test
instance.

In a practical scenario, central quality measures are the number of solved instances and the
total time spent for both training and testing – one should try to maximize the number of solved
instances but keep the total time spent within the given time limits (e.g., so that both training
and exploitation can be performed on a PC that user has on his disposal). Surprisingly, our
experiments show that even for extremely small training timeouts, the number of solved test
instances is greater than for the best-fixed solver (e.g., for the training timeout of only 1 second,
the number of solved instances increases from 1051 to 1087, while the total time reduces from
3862 to 3572 minutes – 145 minutes are used for training and 3427 are used for testing).

The overall training time increases approximately linearly with the increase of the training
timeout. On the other hand, the overall solving time of all test instances sharply decreases
with the increase of the training timeout and then stabilizes. Therefore, their sum exhibits
the behavior plotted in Figure 2. One can see that the total time is minimal for the training
timeout of 4 seconds. For the training timeout of 10 seconds, the total time is approximately



the same as the best-fixed method, but 78 more instances are solved. We argue that in practical
scenario it makes sense to use training timeout of approximately 60 seconds as in that case the
total number of solved instances is reached and the total time is still reasonable (e.g., if we
allowed twice as much time for training, the overall time would significantly increase from 7346
to 11415 minutes, and no new instances would be solved).
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Figure 2: Summary results of experimental evaluation on all instances of autost and best-
fixed method; each mark on curve represents one conducted testing based on training with the
corresponding timeout.

5 Conclusions and Further Work

In this paper, we have presented a machine-learning methodology for automated instance-based
selection of suitable solver for a given CSP instance. We have conducted thorough experimental
evaluation on several large publicly available corpora using several state-of-the-art solvers, based
on reduction to SAT, reduction to SMT and lazy clause generation. We have focused on the
effects of the training phase duration to overall portfolio quality, under the assumption that the
corpus is organized into families of instances of the same structure, differing only in size and
hardness.

We have tested the quality of our portfolio method using the standard cross-validation
technique, for different training timeout values. We have shown that our autocv approach
significantly improves each single constituent solver and gives good generalization results even
when used with a very fast training phase (so that the training does not require an advanced
cluster computer but can be done on a single PC).

In some scenarios, solving a single fixed set of instances within the given time limit with
the given set of solvers is the only practical concern. We have addressed this problem and
developed a method denoted by autost that uses a short training phase on that set of instances
(so the training and the exploitation instances overlap) before solving each instance by using
the solver selected based on the results of the training phase. Experimental results indicate
that our autost method is very stable and that number of solved instances gradually increases
when increasing the training timeout value, but then saturates and from some point increasing



the training timeout values does not affect the number of solved instances. Therefore, one
can choose a training timeout value depending on the time he has available and significantly
improve the results of every single fixed solver.

Since very small timeouts (e.g., 1s, 5s, or 10s) already improve the number of solved in-
stances, a simple, but robust solver might be obtained if all solvers are run as schedule where
each solver has 1 (or 5, or 10) seconds to solve the given problem, and otherwise the finally
selected solver is assigned the full run time.

Instead of only choosing solvers, their configuration options can also be selected automati-
cally. For example, our system meSAT [39] supports multiple encodings of CSP to SAT (order,
direct, support), and the Bee system [29] offers somewhat similar possibilities. Similarly, solvers
such as Minisat++ [38] offer 3 different options when encoding PB constraints (adders, BDDs,
Sorters), and when selecting Sorters based technique there is the whole phase of selecting which
base to use (see, for example, [11, 15]). Our prior experiments with the system meSAT [39]
have shown that choosing a suitable SAT encoding can be automated, with very promising
results. In our further work, it would be good to consider configuration options of a diverse
set of solvers (such as the one used in this paper), and with a solver also to choose its suitable
configuration.

In our future work a larger and more diverse set of instances should be included in experi-
ments, not only the ones containing global constraints. Also, the set of the used solvers should
be extended. It would be also interesting to see if other classifying methods, different from
k-NN, give similar results. We also plan to compare the efficiency of our portfolio methods for
CSP with the existing ones.

Although it would be interesting to know if our conclusions transfer to SAT portfolios as
well, we expect worse results (i.e., smaller improvements for short training times), due to the
richer structure of CSP instances.
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[38] Niklas Sörensson and Niklas Eén. Minisat 2.1 and minisat++ 1.0sat race 2008 editions. SAT,
page 31, 2009.
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